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How can we apply numerical methods to identifiability?




Consider the following approach:

= Assume your model is structurally identifiable and choose a set of “true”
parameters

» Generate simulated output data from these “true” parameters

= Attempt to fit your simulated data using a range of parameter values and
solve for the “best” parameter set to reproduce the simulated data

= IF your original parameter set is returned, your model may be
identifiable

» What does it mean if the simulated data is without noise?
» With noise?




= Begin by reframing the question:

o Given output data z, what parameter set p

H OW Ca n | C h ec k generates this?
my m O d e | u Sl n g o Consider “Parameter estimation” instead of

“identifiability”

Stat i Sti CS ? > How are these concepts related?

o What parameter or distribution set most likely

generated the data?




= Most numerical methods can explore both structural

Why wWou |d | Welals and practical identifiability
to explore = Wide range of applicability to different models

Relatively fast implementation

numerical
methods?

Typically restricted to local identifiability, but global
methods exist too




= Basic Idea: Reframe compartmental model as a
statistical model where we assume the general

M aximum form of the density function, but not parameter
Likelihood values
M ethOd = Then if we knew the parameters, we could frame a
probability: P(z | p)
/!

data parameters



Now we rethink the probability distribution P, as a
function of the data f

We want to find the parameter set p that maximizes the

Likelihood Function: likelihood L given data z

P(z|p) = f(z,p) =L(p|2)
Example:

exp <—M> = L(p,0%|2)
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Likelihood Function:

Parameter|value =

Data value =z
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Likelihood Function:
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p Likelihood Function: .

o Likelihood function
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Maximum Likelihood Method:

® Consistency: With sufficiently large number of observations, n, it is
possible to find the value of p with arbitrary precision

* Normality: As n increases, the MLE tends to a Gaussian distribution
with mean and covariance equal to the inverse of the Fisher
information matrix

= Efficiency: Achieves Cramer-Rao bound as n— o



Let’s derive the
likelihood

function for the
Gaussian
example!

= We have an ODE model defined as:

x=f(xt;p) X~ SWVM-

y = g(x,tp) W

= Now sample data at times t;, t,, t3, ..., t,

= Data at ¢t; is defined as z; +e;

= Assume error e; is Gaussian and unbiased, with known

variance @) |, oo Cavistowt
= View data z; as a sample from Gaussian distribution
with mean y(x, t;; p) and variance o¢?

= We assume all measures are independent (Is this
realistic?)



So let’s calculate the likelihood function:
* The Gaussian PDF: f(zilpo®) =

s P (-25)
(Zi_Y(x'tiip))z)
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= Rather than maximizing the likelihood, in practice
we minimize the negative log likelihood

® Log is well behaved and minimization algorithms are
common
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look like in
practice? = gln(z/n@ + nln(7€
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... Then our problem reduces to:

Y (zi—y(tip))?

mpin(—LL) = ngn;(zi = y(ti; p))? a/
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So what’s the big idea? o

= We will “profile” one parameter at a time using the
likelihood function

» Fix the parameter to a range of values and
fitting all other parameters in the model

» Calculate the likelihood value for every
combination

= This will give the best fit at each point

= Plot the best likelihood values for each value of p;

... This is known as the Profile Likelihood method!
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What can we expect to see?




5 Minute Break!
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